MIT’s Tiny Terahertz Receiver Preserves IoT Battery Life
TOPICS: Battery Technology MIT Robotics Sensor.
MIT’s Tiny Terahertz Receiver Preserves IoT Battery Life |
Researchers from MIT and elsewhere have built a wake-up receiver that communicates using terahertz waves, which enabled them to produce a chip more than 10 times smaller than similar devices. Their receiver, which also includes authentication to protect it from a certain type of attack, could help preserve the battery life of tiny sensors or robots. Credit: Jose-Luis Olivares/MIT with figure courtesy of the researchers. Researchers demonstrate a low-power “wake-up” receiver one-tenth the size of other devices.
MIT researchers have created a terahertz-based wake-up receiver for IoT devices, significantly reducing size and power consumption while improving security features. Scientists are striving to develop ever-smaller internet-of-things devices, like sensors tinier than a fingertip that could make nearly any object trackable. These diminutive sensors have miniscule batteries which are often nearly impossible to replace, so engineers incorporate wake-up receivers that keep devices in low-power “sleep” mode when not in use, preserving battery life. Researchers at MIT have developed a new wake-up receiver that is less than one-tenth the size of previous devices and consumes only a few microwatts of power. Their receiver also incorporates a low-power, built-in authentication system, which protects the device from a certain type of attack that could quickly drain its battery. Many common types of wake-up receivers are built on the centimeter scale since their antennas must be proportional to the size of the radio waves they use to communicate. Instead, the MIT team built a receiver that utilizes terahertz waves, which are about one-tenth the length of radio waves. Their chip is barely more than 1 square millimeter in size.They used their wake-up receiver to demonstrate effective, wireless communication with a signal source that was several meters away, showcasing a range that would enable their chip to be used in miniaturized sensors.
For instance, the wake-up receiver could be incorporated into microrobots that monitor environmental changes in areas that are either too small or hazardous for other robots to reach. Also, since the device uses terahertz waves, it could be utilized in emerging applications, such as field-deployable radio networks that work as swarms to collect localized data.
Lee wrote the paper with his co-advisors and senior authors Anantha Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science, who leads the Energy-Efficient Circuits and Systems Group, and Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group in the Research Laboratory of Electronics; as well as others at MIT, the Indian Institute of Science, and Boston University. The research is being presented at the IEEE Custom Integrated Circuits Conference.
Terahertz waves, found on the electromagnetic spectrum between microwaves and infrared light, have very high frequencies and travel much faster than radio waves. Sometimes called “pencil beams,” terahertz waves travel in a more direct path than other signals, which makes them more secure, Lee explains.However, the waves have such high frequencies that terahertz receivers often multiply the terahertz signal by another signal to alter the frequency, a process known as frequency mixing modulation. Terahertz mixing consumes a great deal of power.
Instead, Lee and his collaborators developed a zero-power-consumption detector that can detect terahertz waves without the need for frequency mixing. The detector uses a pair of tiny transistors as antennas, which consume very little power.
Even with both antennas on the chip, their wake-up receiver was only 1.54 square millimeters in size and consumed less than 3 microwatts of power. This dual-antenna setup maximizes performance and makes it easier to read signals.
Once received, their chip amplifies a terahertz signal and then converts analog data into a digital signal for processing. This digital signal carries a token, which is a string of bits (0s and 1s). If the token corresponds to the wake-up receiver’s token, it will activate the device.